В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
НастяMokrik
НастяMokrik
18.03.2021 04:01 •  Математика

С ЛЮБЫМ ЗАДАНИЕМ ТОЛЬКО НЕ 4​

Показать ответ
Ответ:
termos68
termos68
04.01.2020 22:31
Решить систему двух уравнений с двумя переменными графически. Для этого нужно найти точки (точку) пересечения двух графиков функций, которые у тебя представленны, а для этого их нужно привести (преобразовать немного) и построить:

х+2у=0 (нужно 《перенести》 в другую часть выражения, за знак равенства х: т.е. от обеих частей выражения (левой от знака равенства и правой) отнять х)
5х+у=-18 (нужно 《перенести》 5х...)

2у=-х (после этого нужно сделать, чтоб слева от знака равенства был только у, т.е. обе части равенства нужно делить на 2)
у=-5х-18

у=-х/2
у=-5х-18

Т. к. это линейная функция (прямая) (и первая, и вторая), то строить её можно только по двум произвольным точкам (больше и не надо, чтобы построить прямую).

Точки первой:
пусть х=2
у=-2/2=1
Так первая точка первой фунции (2;-1)
Аналогично можно найти произвольную вторую точку графика первой функции, пусть, например, (-2;1)

Произвольные точки графика второй функции тоже аналагично можно найти, просто подставив любое значение х и подсчитав:
(-3;-3), (-4;2)

Строишь по двум точкам график каждой функции и находишь точку пересечения (общую точку) по полученному графику этих двух прямых.
По графику точка пересечения: (-4;2).
ответ: (-4;2).

Я тебе в программе нарисовал белым цветом график первой функции (у=-х/2) и синим график второй (у=-5х-18) (просто в школе их надо ещё и подписывать). Поставь 《+》 в комментариях, если получил скриншот программы, если не сложно.

Как решить графическую систему уравнение х+2у=0 5х+у=-18
0,0(0 оценок)
Ответ:
likonady
likonady
24.07.2020 10:51

ответ

Пошаговое объяснение:

Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:

Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.

Случайные величины, как правило, обозначают через  *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например, .

* Иногда используют , а также греческие буквы

Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:

– количество очков, которое выпадет после броска игрального кубика.

В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина  может принять одно из следующий значений:

.

Пример из статьи о Статистическом определении вероятности:

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

, либо  мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

–  дальность прыжка в длину (в некоторых единицах).

Её не в состоянии предугадать даже мастер спорта :)

Тем не менее, ваши гипотезы?

Коль скоро речь идёт о множестве действительных чисел, то случайная величина  может принять несчётно много значений из некоторого числового промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.

Таким образом, случайные величины целесообразно разделить на 2 большие группы:

1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.

…нарисовались непонятные термины повторяем основы алгебры!

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную.

Поехали:

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота