Таблица умножения — это таблица, в каждой клетке которой записано произведение номера столбца и номера строки. Четыре слона стоят в углах некоторого клетчатого прямоугольника в таблице умножения. Каждый из них сделал ход внутрь прямоугольника — все на одинаковое расстояние. Докажите, что сумма чисел под ними не изменилась
Пошаговое объяснение:
Пусть размеры таблицы - n*m. Тогда изначальная сумма под слонами была 1*1 + 1 *n + m*1 + n*m = (n + 1) + m(n + 1) = (n+1)(m+1).
Пусть расстояние, на которое ходили слоны - k. Слоны ходят по диагонали, поэтому их координаты по вертикали или горизонтали изменияются на одно и то же число k.
Посчитаем новую сумму:
(1 + k) * (1 + k) + (1 + k) * (n - k) + (m - k) * (1 + k) + (n - k) * (m - k) =
(1 + k) * ( 1 + k + n - k + m - k) + (n - k) * (m - k) =
(k + 1) * (n + m - k + 1) + n * m - k * (n + m) + k * k =
k * (n + m) - k * k + k + n + m - k + 1 + n *m - k * (n + m) + k * k =
n + m + 1 + n *m =
(n + 1)(m + 1).
Получили то же самое число, что и требовалось доказать.