Точка a(5; -1) является вершиной квадрата, одна из сторон которого лежит на прямой 4x-3y-7=0. составить уравнения прямых, на которых лежат остальные стороны этого квадрата.
Пусть х км/ч - собственная скорость катера. Тогда скорость катера по течению - (х+2) км/ч, против течения (х-2) км/ч. Катер был в пути 19 ч-15ч = 4 ч. Из них 2 ч стоял, т. е. катер плыл 4-2=2 ч. Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч. Составляем уравнение: 7/(х-2) + 27/(х+2) = 2 7*(х+2) + 27(х-2) = 2 (х+2)*(х-2) 7х+14+27х-54=2х(квадрат)-8 34х-40-2хквадрат+ 8 =0 2хквадрат -34х + 32=0 хквадрат - 17х + 16 =0 D=17*17-4*16=289-64=225 х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
Связь между радиусом вписанной окружности r и радиусом описанной окружности R определяется формулой: , где n- число сторон многоугольника. Отсюда их соотношение равно:
Отношение площадей кругов равно отношению квадратов их радиусов:
По условию задачи оно равно 0,75 или 3/4. Получаем Значение √3/2 соответствует углу 30°. Значит, 180°/n = 30°, отсюда n = 180/30 = 6. Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см. Радиус описанного круга для шестиугольника R = a = 2 см. Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.
Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч.
Составляем уравнение:
7/(х-2) + 27/(х+2) = 2
7*(х+2) + 27(х-2) = 2 (х+2)*(х-2)
7х+14+27х-54=2х(квадрат)-8
34х-40-2хквадрат+ 8 =0
2хквадрат -34х + 32=0
хквадрат - 17х + 16 =0
D=17*17-4*16=289-64=225
х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
х2 = (17+15)/2 = 16 км/ч
ответ. Собственная скорость катера 16 км/ч
, где n- число сторон многоугольника.
Отсюда их соотношение равно:
Отношение площадей кругов равно отношению квадратов их радиусов:
По условию задачи оно равно 0,75 или 3/4.
Получаем
Значение √3/2 соответствует углу 30°.
Значит, 180°/n = 30°, отсюда n = 180/30 = 6.
Если периметр многоугольника равен 12, а число сторон равно 6, то длина стороны составит a = 12/6 = 2 см.
Радиус описанного круга для шестиугольника R = a = 2 см.
Радиус вписанного круга r = a*(√3/2) = 2*(√3/2) = √3 см.