УМОЛЯЮ ( Номер 1. Диагонали прямоугольника АВСД пересекаются в точке L, АД = 10, АС = 14. Найдите периметр треугольника АВСД. Номер 2. Найти периметр прямоугольника, если DM - биссектриса угла D, а CD = 5, ВМ = 6
Маємо правильну чотирикутну піраміду SABCD, в основі якої лежить правильний чотирикутник (квадрат) ABCD.
Висота SO правильної трикутної піраміди проектується у центр квадрата ABCD – точку перетину діагоналей AC і BD. Оскільки висота SO перпендикулярна до площини основи (квадрата ADCD), то вона перпендикулярна до кожної прямої, що лежить в цій площині.
Проведемо відрізок ОК⊥ДС . Оскільки SO⊥ОК, ОК⊥ДС, то за теоремою «про три перпендикуляри» SК⊥ДС. (SК - апофема Т.як ΔSCD - рівнобедрений, то SК- медіана (ДК=КС) ).
Звідси слідує, що ∠SКO=60° – лінійний кут двогранного кута при основі – кут нахилу бічної грані до площини основи. ∠SOК=90°)
1) Висота піраміди
ΔSКO (∠О=90°): ∠ОSК = 30°,Катет прямокутного трикутника, що лежить проти кута в 30 °, дорівнює половині гіпотенузи ⇒ ОК=1/2*SK = 3см.
За теоремою Піфагора: SО²= SК²-ОК²
SО=√(36-9)=√27=3√3см
2) Ребро основи піраміди
Так як ABCD - правильний чотирикутник (квадрат), то АД=2*ОК=2*3=6см
Сначала переведём из мм в см длину известной стороны: в 1 см - 10 мм, получается 90 мм - это 9 см. Теперь можно решать задачу. Нам дана площадь прямоугольника и одна из его сторон. Мы можем найти вторую сторону прямоугольника. Площадь прямоугольника вычисляется по формуле: S=a*c, где а и с - стороны прямоугольника. Выразим из этой формулы неизвестную нам сторону: с=S/а=18:9=2 см - длина второй стороны прямоугольника.
Периметр прямоугольника - это сумма длин всех сторон, т.е.: Р=2+2+9+9=4+18=22 см - периметр данного прямоугольника.
1) В - 3√3 см
2) Б - 6 см
3) Г - 3√5 см
Пошаговое объяснение:
Маємо правильну чотирикутну піраміду SABCD, в основі якої лежить правильний чотирикутник (квадрат) ABCD.
Висота SO правильної трикутної піраміди проектується у центр квадрата ABCD – точку перетину діагоналей AC і BD. Оскільки висота SO перпендикулярна до площини основи (квадрата ADCD), то вона перпендикулярна до кожної прямої, що лежить в цій площині.
Проведемо відрізок ОК⊥ДС . Оскільки SO⊥ОК, ОК⊥ДС, то за теоремою «про три перпендикуляри» SК⊥ДС. (SК - апофема Т.як ΔSCD - рівнобедрений, то SК- медіана (ДК=КС) ).
Звідси слідує, що ∠SКO=60° – лінійний кут двогранного кута при основі – кут нахилу бічної грані до площини основи. ∠SOК=90°)
1) Висота піраміди
ΔSКO (∠О=90°): ∠ОSК = 30°,Катет прямокутного трикутника, що лежить проти кута в 30 °, дорівнює половині гіпотенузи ⇒ ОК=1/2*SK = 3см.
За теоремою Піфагора: SО²= SК²-ОК²
SО=√(36-9)=√27=3√3см
2) Ребро основи піраміди
Так як ABCD - правильний чотирикутник (квадрат), то АД=2*ОК=2*3=6см
3) Бічне ребро піраміди
ΔSКС(∠К=90°): За теоремою Піфагора SС² = SК²+ КС²
SС = √(36+9)=√45=3√5см
Теперь можно решать задачу.
Нам дана площадь прямоугольника и одна из его сторон. Мы можем найти вторую сторону прямоугольника. Площадь прямоугольника вычисляется по формуле:
S=a*c, где а и с - стороны прямоугольника. Выразим из этой формулы неизвестную нам сторону:
с=S/а=18:9=2 см - длина второй стороны прямоугольника.
Периметр прямоугольника - это сумма длин всех сторон, т.е.:
Р=2+2+9+9=4+18=22 см - периметр данного прямоугольника.