всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 – 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:
можно выбрать 3 вопроса из 60 (общее количество исходов).
Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:
можно выбрать 2 «хороших» вопроса и один «плохой»;
можно выбрать 3 «хороших» вопроса.
По правилу сложения комбинаций:
можно выбрать благоприятствующую для сдачи экзамена комбинацию 3 вопросов (без разницы с двумя или тремя «хорошими» вопросами).
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2
ответ:0.4
Пошаговое объяснение:
всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 – 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:
можно выбрать 3 вопроса из 60 (общее количество исходов).
Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:
можно выбрать 2 «хороших» вопроса и один «плохой»;
можно выбрать 3 «хороших» вопроса.
По правилу сложения комбинаций:
можно выбрать благоприятствующую для сдачи экзамена комбинацию 3 вопросов (без разницы с двумя или тремя «хорошими» вопросами).
По классическому определению:
– вероятность того, что студент сдаст экзамен.
Как говорится "нетрудно показать, что" при этом условии в основание пирамиды (трапецию) можно вписать окружность и следовательно можно найти длины боковых сторон трапеции: (4+16)/2 = 10 см
Диаметр вписанной окружности можно найти как катет прямоугольного треугольника с гипотенузой 10 (боковая сторона трапеции) и катетом равным половине разности оснований: (16-4)/2 = 6 см
D = корень(10*10-6*6) = 8 см
То есть высоты боковых граней будут равны (D/2)/sin(30) = (8/2)/0.5 = 8 см
Теперь дело за площадью которая равна половине произведения найденной высоты (она одинакова у всех четырех боковых граней) на сумму сторон основания Sб = 0.5*8*(4+16+10+10) = 60 см2