Входе опроса 35 учащихся школы было выяснено, сколько времени в неделю (с точностью до 0,5 часа) они затрачивают не занятиях в кружках и спортивных секциях. получили следующие данные: 5 ; 1,5; 0; 2,5 ; 1 ; 0; 0; 2 ; 2 ; 3,5; 4; 5; 3,5 ; 2,5 ; 0 ; 1,5 ; 4,5; 3; 3 ; 5 ; 3,5; 4; 3,5; 3 ; 2,5 ; 2 ; 1 ; 2; 2 ; 4,5 ; 4 ; 3,5; 2; 5; 5. представьте этот ряд в виде таблицы частот. найдите, сколько времени тратят в среднем ученики на занятия в кружках и спортивных секциях. заранее за ответ!
Пусть на первом складе было х тонн картофеля, тогда на втором складе было 2,5х тонн картофеля. Когда на первый склад привезли ещё 189 тонн картофеля, то на нем стало (х + 180) тонн. Когда на второй склад привезли 60 тонн картофеля, то на нем стало (2,5х + 60) тонн. По условию задачи известно, что после этого на обоих складах картофеля стало одинаковое количество. Составим уравнение и решим его.
х + 180 = 2,5х + 60;
х - 2,5х = 60 - 180;
-1,5х = -120;
х = -120 : (-1,5);
х = 80 (т) - на 1-м складе;
2,5х = 80 * 2,5 = 200 (т) - на 2-м складе.
ответ. 80 т; 200 т.
Пошаговое объяснение:
Пример 1. График какой функции является возрастающим:
а) ; б) у = х3 – 27; в) y=2-x?
Рассмотрим каждую из функций в отдельности:
а) – степенная функция. Область определения этой функции: . На всей области определения функция монотонна.
Возьмём два значения х1 = 1 и х2 = 4. Им соответствует у1 = – 1, у2 = – 2. Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
б) у = х3 – 27 – алгебраическая функция. Область определения – множество всех действительных чисел. На всей области определения функция монотонна. Возьмём два значения х1 = 3, х2 = 4. Им соответствует у1 = 0, у2 = 37.
Видим, что если х1 < x2 , то и у1 < у2. Функция возрастающая.
в) y=2-x – показательная функция. Областью определения является множество всех действительных чисел. На всей области определения функция монотонна. Пусть х1 = 0, х2 = 1. Им соответствуют у1 = 1, у2 = 0,5.
Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
ответ: б) у = х3 – 27.
Пример 2. Парабола у = 2х2 – (а – 3)х + а + 3 проходит через начало координат. Найдите абсциссу вершины параболы.
Найдём значение параметра а. Т.к. парабола проходит через начало системы координат, то координаты точки (0; 0) являются корнями уравнения параболы: 0 = 2 ∙ 02 – (а – 3) ∙ 0 + а + 3; а = – 3.
Уравнение параболы примет вид: у = 2х2 + 6х.
Абсцисса вершины параболы находится по формуле: . Получаем .
ответ: – 1, 5.
Пошаговое объяснение: