Вопрос № 1 Известно, что a<0, b<0. Укажите выражения, значения которых отрицательны:
а) а : b;
б) -a · b;
в) -a · (-b);
г) a : (-b)
 а, б, в
 б, в
 б, г
 а, в
Вопрос № 2
Укажите значение произведения 40 · (-1,2)
 4,8
 -4,8
 -48
 48
Вопрос № 3
Укажите значение частного 30 : (-1,5)
 20
 -20
 200
 -200
Вопрос № 4
Используя верное равенство 517 : 11 = 47,
найдите значение выражения -51,7:4,7
 11
 -11
 1,1
 -1,1
Вопрос № 5
Какой закон умножения выражает равенство
(а - b) · c = a · c - b · c
 переместительный
 распределительный
 сочетательный
Вопрос № 6
Выполните умножение
-20 · (-21) · (-5)
 210
 -210
 2100
 -2100
Вопрос № 7
Найдите значение выражения
100 : (-0,1) · (-0,01)
 10
 -10
 0,1
 -0,1
Пусть на первом складе было х тонн картофеля, тогда на втором складе было 2,5х тонн картофеля. Когда на первый склад привезли ещё 189 тонн картофеля, то на нем стало (х + 180) тонн. Когда на второй склад привезли 60 тонн картофеля, то на нем стало (2,5х + 60) тонн. По условию задачи известно, что после этого на обоих складах картофеля стало одинаковое количество. Составим уравнение и решим его.
х + 180 = 2,5х + 60;
х - 2,5х = 60 - 180;
-1,5х = -120;
х = -120 : (-1,5);
х = 80 (т) - на 1-м складе;
2,5х = 80 * 2,5 = 200 (т) - на 2-м складе.
ответ. 80 т; 200 т.
Пошаговое объяснение:
Пример 1. График какой функции является возрастающим:
а) ; б) у = х3 – 27; в) y=2-x?
Рассмотрим каждую из функций в отдельности:
а) – степенная функция. Область определения этой функции: . На всей области определения функция монотонна.
Возьмём два значения х1 = 1 и х2 = 4. Им соответствует у1 = – 1, у2 = – 2. Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
б) у = х3 – 27 – алгебраическая функция. Область определения – множество всех действительных чисел. На всей области определения функция монотонна. Возьмём два значения х1 = 3, х2 = 4. Им соответствует у1 = 0, у2 = 37.
Видим, что если х1 < x2 , то и у1 < у2. Функция возрастающая.
в) y=2-x – показательная функция. Областью определения является множество всех действительных чисел. На всей области определения функция монотонна. Пусть х1 = 0, х2 = 1. Им соответствуют у1 = 1, у2 = 0,5.
Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.
ответ: б) у = х3 – 27.
Пример 2. Парабола у = 2х2 – (а – 3)х + а + 3 проходит через начало координат. Найдите абсциссу вершины параболы.
Найдём значение параметра а. Т.к. парабола проходит через начало системы координат, то координаты точки (0; 0) являются корнями уравнения параболы: 0 = 2 ∙ 02 – (а – 3) ∙ 0 + а + 3; а = – 3.
Уравнение параболы примет вид: у = 2х2 + 6х.
Абсцисса вершины параболы находится по формуле: . Получаем .
ответ: – 1, 5.
Пошаговое объяснение: