Записати вигляд частинного розв’язку неоднорідного диференціального рівняння 2-го порядку зі сталими коефіцієнтами, якщо відомі k1, k2 - корені характеристичного рівняння та функція f (x) - права частина рівняння: а) k1 =2, k2 =-1, f (x)=(3x-1)e^2x ; б)k1=0,k2=1, f(x)=2x^2
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку
Обозначим скорость Ярика за x км/ч. Поскольку он ехал с постоянной скоростью, его скорость не больше средней скорости всех троих мальчиков. Отсюда получаем x<(54+27+x):3, значит 3x<81+x, откуда x не больше 40 км/ч.
Скорость Юрика на обоих участках делится на 3, значит x должно делиться на 3. Кроме того, оба участка кто-нибудь проезжал с четной скоростью, значит x должно делиться еще и на 2. Итого, x делится на 2 и на 3, то есть делится на 6, и не больше 40 км/ч, значит x не больше 36 км/ч.