В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kebabchik111
kebabchik111
06.02.2021 16:54 •  Обществознание

На плоскости дано бесконечное множество точек S, при этом в любом квадрате 1 × 1 лежит конечное число точек из множества S. Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняется: |XA|,\;|XB| ≥ 0,999|AB|.

Показать ответ
Ответ:
LOLMASHAME
LOLMASHAME
14.01.2021 22:27

Докажем утверждение задачи от противного.

Можно предположить, что для любых двух разных точек A и B из S найдется отличная от них точка X из S такая, что либо XA < 0,999AB, либо XB < 0,999AB.

Переформулируем вышеприведенное утверждение: для любого отрезка I с концами в S и длиной l найдется отрезок I′ с концами в S длины не более 0,999l, один из концов которого совпадает с некоторым концом I.

Или, иначе говоря, I′ пересекает I.

Возьмем теперь первый отрезок I1 длины l и будем брать отрезки I2, I3, …так, что Ik + 1 пересекается с Ik и |Ik + 1| < 0,999|Ik|.

Все эти отрезки имеют концы в S. Ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца Ik до любого конца I1 не превосходит

Следовательно, в квадрате 2000l × 2000l с центром в любом из концов I1 лежит бесконечное число точек S.

Но из условия следует конечность их числа в любом квадрате.

Полученное противоречие завершает доказательство.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Обществознание
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота