В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
vlasov200133
vlasov200133
29.06.2022 05:11 •  Алгебра

Докажите, что:
ab(a-b)≤a^3-b^3 если а≥b

Показать ответ
Ответ:
platymax
platymax
07.10.2020 19:53

Объяснение:

Допустим, что a<0 и b<0. Распишем сумму кубов: a^3+b^3=(a+b)(a^2-ab+b^2). Тогда ab(a+b)≤(a+b)(a^2-ab+b^2). При a и b<0, (a+b)-отрицательное, а а^2-ab+b^2≥ab, поскольку (a-b)^2≥0 при любых. a и b. Тогда сокращением на (a+b) меняется знак неравенства.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота