Известно что в бесконечно убывающей геометрической прогрессии каждый член в 2,5 раза больше суммы всех последующих членов. найдите знаменатель прогрессии РАСПИШИТЕ
7х+3у=1, 2х-6у=-10 выражаем в каждом уравнение у через х: 3у=1-7х, у=1-7х/3 -6у=-10-2х, у=10+2х/6 у= 1-7х 3 у= 5+х 3 Это линейные функции, график "прямая" Строим график 1 функции х| 0 | 1| y|1/3|-2| построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2) соединили эти точки прямой. Строим график 2 функции: х| 0 | 1 | y|1 1/3| 2 | В то же прямоугольной системе координат строим точки М(0;1 1/3),Р(1;2) соединяем точки прямой. Прямые пересекаются в точке Д(-1/2;1 1/2) ответ: (-1/2; 1 1/2)
встречи будет одинаковым поэтому просто t), теперь второй велосипедист у него скорость V2, а путь S2, но сказано что первый проехал на 6 км меньше, значит второй по отношению к пути первого велосипедиста проехал на 6 км больше!, отсюда S2=S1+6. Время за которое второй доехал до места встречи t=(S1+6)/V2. Теперь смотрим что происходило после встречи: первый проехал путь второго (а это S2=S1+6) за время 2 часа 24 мин (переводим в минуты 144 мин), значит 144=(S1+6)/V1. Второй в свою очередь проехал путь первого S1 за 1 час и 40 мин (это 100 мин), значит 100=S1/V2. Вот все условия записаны. Теперь из последних двух выражений выводим: V1=(S1+6)/144 и V2=S1/100. Эти данные подставляем в первые выражения и так как t у них одинаковое, то приравниваем их:S1/V1=(S1+6)/V2, подставляем V1 и V2: 144хS1/(S1+6)=100х(S1+6)/S1, из этого получаем 144хS1*2=100х(S1+6)*2, далее 12*2хS1*2=10*2х(S1+6)*2 избавляемся от квадратов получаем 12S1=10х(S1+6) отсюда 2S1=60, S1=30 км. Вот и ответ.
2х-6у=-10
выражаем в каждом уравнение у через х:
3у=1-7х, у=1-7х/3
-6у=-10-2х, у=10+2х/6
у= 1-7х
3
у= 5+х
3
Это линейные функции, график "прямая"
Строим график 1 функции
х| 0 | 1|
y|1/3|-2|
построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2)
соединили эти точки прямой.
Строим график 2 функции:
х| 0 | 1 |
y|1 1/3| 2 |
В то же прямоугольной системе координат строим точки
М(0;1 1/3),Р(1;2)
соединяем точки прямой.
Прямые пересекаются в точке Д(-1/2;1 1/2)
ответ: (-1/2; 1 1/2)