2у=6-3х
Какое уравнение не задает ту же прямую?
Объяснение:
Дано уравнение прямой:
3х-2у=6
1.
С тождественных преобразо
ваний получим:
3х-2у=6 | ×2
6х-4у=12
Полученное уравнение задает ту же
прямую, так как уравнения равносиль
ны:
3х-2у=6 <==> 6х-4=12
2.
3х-2у=6 <==>
-2у=6-3х | ×(-1) <==>
2у=-6+3х
Полученное уравнение не равносильно
заданному.
Ввод:
Это уравнение задает ДРУГУЮ прямую.
Уравнение 2у=6-3х задает другую прямую.
3.
3х-2у=6 | :3 <==>
3х/3-2у/3=6/3 <==>
х-2/3у=2
Последнее уравнение получено из задан
ного тождественным преобразованием,
поэтому уравнения равносильны. Это
уравнение задает ту же прямую.
4.
3х-2у=6 | :2 <==>
1,5х-у=3
Полученное уравнение равносильно исходному, поэтому это уравнение зада
ет ту же прямую.
О т в е т :
f(x)=x^3-1
График - кубическая парабола
График расположен в I, III, IV четвертях координатной плоскости
Пересечение с осью Х - точка (1;0)
Пересечение с осью У точка (0;-1)
Область определения: D=x∈(-∞;+∞) множество действительных чисел
Область значений: Е=у∈(-∞;+∞) множество действительных чисел
Непрерывна на всей числовой прямой
Нули функции: (1;0)
Промежутки знакопостоянства: y>0 при x∈(1;+∞), y<0 при x∈(-∞;1)
Возрaстает по всей числовой прямой:
х₁=-2, у₁=2; х₂=2, у₂=7 => x₁<x₂→y₁<y₂
График выпуклый на промежутке (-∞;0)), вогнутый - (0;+∞)
Функция не четная и не нечетная:
Если х=1, то x^3-1≠-x^3-1
0≠-2
х^3-1≠(-1)*(-х^3-1)
0≠2
2у=6-3х
Какое уравнение не задает ту же прямую?
Объяснение:
Дано уравнение прямой:
3х-2у=6
1.
С тождественных преобразо
ваний получим:
3х-2у=6 | ×2
6х-4у=12
Полученное уравнение задает ту же
прямую, так как уравнения равносиль
ны:
3х-2у=6 <==> 6х-4=12
2.
3х-2у=6 <==>
-2у=6-3х | ×(-1) <==>
2у=-6+3х
Полученное уравнение не равносильно
заданному.
Ввод:
Это уравнение задает ДРУГУЮ прямую.
Уравнение 2у=6-3х задает другую прямую.
3.
3х-2у=6 | :3 <==>
3х/3-2у/3=6/3 <==>
х-2/3у=2
Последнее уравнение получено из задан
ного тождественным преобразованием,
поэтому уравнения равносильны. Это
уравнение задает ту же прямую.
4.
3х-2у=6 | :2 <==>
1,5х-у=3
Полученное уравнение равносильно исходному, поэтому это уравнение зада
ет ту же прямую.
О т в е т :
2у=6-3х
f(x)=x^3-1
График - кубическая парабола
График расположен в I, III, IV четвертях координатной плоскости
Пересечение с осью Х - точка (1;0)
Пересечение с осью У точка (0;-1)
Область определения: D=x∈(-∞;+∞) множество действительных чисел
Область значений: Е=у∈(-∞;+∞) множество действительных чисел
Непрерывна на всей числовой прямой
Нули функции: (1;0)
Промежутки знакопостоянства: y>0 при x∈(1;+∞), y<0 при x∈(-∞;1)
Возрaстает по всей числовой прямой:
х₁=-2, у₁=2; х₂=2, у₂=7 => x₁<x₂→y₁<y₂
График выпуклый на промежутке (-∞;0)), вогнутый - (0;+∞)
Функция не четная и не нечетная:
Если х=1, то x^3-1≠-x^3-1
0≠-2
х^3-1≠(-1)*(-х^3-1)
0≠2