11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
Объяснение:
диагоналей прямоугольника: d=?
ширина прямоугольника a=x
длина прямоугольника:b=x+19
S=a*b
228=x(x+19)
228=x²+19x
X²+19x=228
X²+19x-228=0
Δ=361+912=1273
√Δ=√1273=35,7
X1=(-19-35,7)/2=-54,4 длина не может быть отрицательной
X2=(-19+35,7)/2=16,7/2=8,35
ширина прямоугольника a=x=8,35cm
длина прямоугольника:b=x+19=8,35+19=27,35cm
диагоналей прямоугольника: из формулы d²==a²+b²
d²= 27,35²+8,35²=748+70=818
d=√818=28,6cm
OTBET: диагоналей прямоугольника d=28,6cm
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).