В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
umma95
umma95
21.01.2022 10:14 •  Алгебра

Найдите точку минимума функции y=(х^2-8x+8)eв степени х-6

Показать ответ
Ответ:
muy5
muy5
03.07.2020 01:49
Находим производную от функции
y' = (х^2-8x+8)' e^(x-6) + (х^2-8x+8) e^(x-6)' = (2x-8) e^(x-6) + (х^2-8x+8) e^(x-6) =
= e^(x-6) (2x-8+х^2-8x+8) = e^(x-6) (x^2-6x)
Находим значения x, при которых производная равна нулю y' = 0
e^(x-6) (x^2-6x) = 0,
e^(x-6)>0, значит (x^2-6x) = 0,
                          x(x-6) = 0,
                           x = 0 или x-6 = 0,
                                           x = 6
 Нули производной разбивают область определения производной на промежутки: от минус бесконечности до нуля, от нуля до шести и от шести до плюс бесконечности.
(Это изображается на числовой оси и отмечается дугаvb)/
Определим знак производной на каждом из данных промежутков:
при x из промежутка от 6 до плюс бесконечности (допустим x = 10) значение производной функции больше нуля,
при x из промежутка от 0 до 6 (допустим x = 1) значение производной меньше нуля,
 при x из промежутка от минус бесконечности до нуля (допустим x= -1) значение производной функции больше нуля.
При переходе через ноль значение производной меняет знак с плюса на минус, значит точка x = 0 - это точка максимума функции,
при переходе через точку 6  значение производной меняет знак с минуса на плюс, значит точка x = 6 - это точка минимума функции.
ответ: 6

                          
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота