Все неравенства сравнивают с нулем.
Поэтому переносим 1 влево
и приводим к общему знаменателю:
Дробь отрицательна, когда числитель и знаменатель имеют разные знаки:
или
Умножаем первое неравенство каждой системы на (-1)
и меняем знак неравенства:
Выбираем пересечение множеств, заданных каждым неравенством системы:
О т в е т. (-∞; 0) U (1; +∞)
Умножаем числитель на (-1) и меняем знак
Решаем методом интервалов:
находим нули числителя:
х=1
и нули знаменателя:
х=0
Эти две точки разбивают числовую прямую на три промежутка. Находим знак дроби на каждом промежутке и
расставляем знаки:
__+___ (0) __-__ (1) __+__
(4; 2)
Найти координаты точки пересечения
прямых.
Объяснение:
1.
Построить график функции
у=2х-3
Уравнение линейной функции:
у=kx+b
k=2; b=-3
График не является прямой пропорци
ональностью ( так как не проходит через
точку начала отсчета)
k>0 ==> линейная функция возрастает
b=-3 относительно нулевой точки на оси
ординат график опущен вниз на 3ед.
Пересечение с ОУ:
у=0
0=2х-3
-2х=-3
х=(-3)/(-2)
х=1,5
(1,5; 0)
Пересечение с ОХ:
у=2×0-3
у=0-3
у=-3
(0; -3)
Для построения графика построим и за
полним таблицу ( достаточно двух точек):
Х 0 4
У -3 5
2.
Чтобы найти координаты точек пересече
ния двух прямых, решаем систему
двух уравнений:
{2х-у=6 | ×(-2)
{х+2у=8
{4х-2у=12
Складываем оба уравнения:
{4х+х=20
{5х=20
{2у=8-х
{х=20:5
{у=(8-х)/2
{х=4
{у=(8-4)/2
{у=2
ответ: (4; 2)
Все неравенства сравнивают с нулем.
Поэтому переносим 1 влево
и приводим к общему знаменателю:
Дробь отрицательна, когда числитель и знаменатель имеют разные знаки:
или
или
Умножаем первое неравенство каждой системы на (-1)
и меняем знак неравенства:
или
Выбираем пересечение множеств, заданных каждым неравенством системы:
или
О т в е т. (-∞; 0) U (1; +∞)
Умножаем числитель на (-1) и меняем знак
Решаем методом интервалов:
находим нули числителя:
х=1
и нули знаменателя:
х=0
Эти две точки разбивают числовую прямую на три промежутка. Находим знак дроби на каждом промежутке и
расставляем знаки:
__+___ (0) __-__ (1) __+__
О т в е т. (-∞; 0) U (1; +∞)
(4; 2)
Найти координаты точки пересечения
прямых.
Объяснение:
1.
Построить график функции
у=2х-3
Уравнение линейной функции:
у=kx+b
k=2; b=-3
График не является прямой пропорци
ональностью ( так как не проходит через
точку начала отсчета)
k>0 ==> линейная функция возрастает
b=-3 относительно нулевой точки на оси
ординат график опущен вниз на 3ед.
Пересечение с ОУ:
у=0
0=2х-3
-2х=-3
х=(-3)/(-2)
х=1,5
(1,5; 0)
Пересечение с ОХ:
х=0
у=2×0-3
у=0-3
у=-3
(0; -3)
Для построения графика построим и за
полним таблицу ( достаточно двух точек):
Х 0 4
У -3 5
2.
Чтобы найти координаты точек пересече
ния двух прямых, решаем систему
двух уравнений:
{2х-у=6 | ×(-2)
{х+2у=8
{4х-2у=12
{х+2у=8
Складываем оба уравнения:
{4х+х=20
{х+2у=8
{5х=20
{2у=8-х
{х=20:5
{у=(8-х)/2
{х=4
{у=(8-4)/2
{х=4
{у=2
ответ: (4; 2)