Построить график функции у=2sinx. По графику определить: a) область определения функции,
б) множество значений функции,
в) период функции,
г) четность функции,
д) точки пересечения графика функции с осями координат,
е) промежутки знакопостоянства функции;
ж) промежутки монотонности функции;
у=1
Объяснение:
берем x-y=2 и выносим у в правую часть и получаем : x=2+y . Из этого мы уже получаем одно уравнение и вместо x подставляем это значение в 1 уравнение. 2*(2+у)-3у=3 и решаем его . 1 действие (это раскрываем скобки) - 4+2у-3у=3 . 2 действие (это все что можно сложить складываем) - 4-у=3. 3 действие ( это 4 переносим в правую сторону , но при этом не забываем что когда переносим в какую либо сторону не зависимо в правую или левую , то переносим с противоположным знаком) получаем : -у = -4+3. -у= -1 . 4 действие ( это -y так оставить нельзя и чтобы его убрать мы в правую часть умножаем еще на -1 и в правой части минус на минус дает плюс и получаем положительное число ) : y=1
1) При x ≥ 9 значения функции y = -5x - 3 не больше -48.
2) При x > -4 значения функции y = -3/4 *x - 1 меньше 2.
Объяснение:
Рисунки прилагаются.
1) y = -5x - 3 линейная функция, график прямая линия, пересекает ось OY в точке (0; --3).
Выберем еще одну точку и построим график функции: x = 10; y = -50-3 = -53.
При каких значениях x значения функции не больше (значит меньше или равно) -48?
Построим в этой же системе координат прямую y = -48.
По графикам видно, что что -5x - 3 ≤ -48 при x ≥ 9
Проверим аналитически:
-5x -3 ≤ -48; -5x ≤ -48 +3; -5x ≤ -45; x ≥ 9.
2) y = -3/4*x - 3 = -0,75x - 1 линейная функция, график прямая линия, пересекает ось OY в точке (0; -1).
Выберем еще одну точку и построим график функции: x = 4;
y = -0,75*4 -1 = -3 - 1 = -4.
При каких значениях x значения функции меньше 2?
Построим в этой же системе координат прямую y = 2.
По графикам видно, что -0,75x - 1 ≤ -2 при x > -4
Проверим аналитически:
-0,75x -1 < 2; -0,75x < 3; x > -4.