В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
fox368
fox368
30.09.2022 02:10 •  Алгебра

При каких значениях b и c прямые y=5*x и y=-3*x являются касательными к графику функции f(x)=x^2+bx+c?

Показать ответ
Ответ:
shintasovazeba
shintasovazeba
03.09.2022 02:45

Объяснение:

1.

х+у=7

5х-3у=11

х=7-у

5*(7-у)-3у=11

35-5у-3у=11

8у=35-11

у=24:8

у=3

х+3=7

х=4

ответ: х=4; у=3

2х-у=3

3х-у=5

у=2х-3

3х-(2х-3)=5

3х-2х+3=5

х=2

2*2-у=3

у=4-3

у=1

ответ: х=2; у=1

2.

х-у=19

х+у=63

х=19+у

19+у+у=63

2у=63-19

у=44:2

у=22

х-22=19

х=19+22

х=41

ответ: 22 и 41 - искомые числа

3.

х руб. - стоимость одного стаканчика мороженого

у руб. - стоимость одной булочки

х+4у=68

2х+3у=76

х=68-4у

2*(68-4у)+3у=76

136 - 8у + 3у = 76

5у = 136-76

у=60:5

у=12 (руб.) - стоимость одной булочки

х+4*12=68

х=68-48

х=20 (руб.) - стоимость одного стаканчика мороженого

ответ: 12 рублей - стоит одна булочка, 20 рублей - стоит один стаканчик мороженого.

4.

у=кх+в

Е(2; -5) и С(0; 1)

-5=2к+в

1=0*к+в

в=1 - из второго уравнения

-5 = 2к+1

2к=-5-1

к=-6:2

к=-3

у=-3х+1 - уравнение прямой, проходящей через заданные точки

5.

3х+ау=5

7х-ву=6

подставляем значения (1; 1)

3*1 + а*1 = 5

3+а=5

а=2

7*1 -в*1=6

7-в=6

в=1

ответ: а=2; в=1

0,0(0 оценок)
Ответ:
LisuNYfka3
LisuNYfka3
13.06.2021 12:05

Функция, конечно, интересная, но искать производную или просто нули функции, очень сложно. Будем рассматривать критические точки функции и искать пределы.

1. Найдем область определения функции:

\left\{\begin{matrix} 1-x\geq0\\ x+4 0\\ x^2-4 \neq 0\end{matrix}\right. \Rightarrow \left\{\begin{matrix} x \leq 1\\ x -4\\ x \neq \pm2\end{matrix}\right.\Rightarrow x\in(-4;-2)\cup(-2;1]

Здесь же видно, какие пределы надо считать. Посчитаем предел справа для x=-4 (это всякие -3.9999 и т.д.)

Очевидно, что рассматривать всегда надо одно слагаемое, которое приводит знаменатель в 0.

\displaystyle \lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{x+4}}\bigg)=\lim_{x\to-4+0}\bigg(-\frac{1}{\sqrt{-4+0+4}}\bigg)=\\=\lim_{x\to-4+0}\bigg(-\frac{1}{+0}\bigg)=-\infty

То есть слева график уходит в минус бесконечность, для области значений делаем выводы.

Теперь дальше, после (-4) следующая интересная точка (-2), рассмотрим предел слева для неё.

\displaystyle \lim_{x\to-2-0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(-2-0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{(-(2+0))^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{(2+0)^2-4}\bigg)=\\=\lim_{x\to-2-0}\bigg(\frac{1}{2^2+2\cdot 2\cdot 0+0^2-4}\bigg)=\lim_{x\to-2-0}\bigg(\frac{1}{+0}\bigg)=+\infty

То есть на интервале (-4;-2) функция уже принимает значения (-\infty; +\infty). Этого уже достаточно, чтобы ответить на вопрос задачи, потому что разрывов внутри интервала нет, а значит, функция обязательно достигнет каждого заявленного значения, ведь на этом интервале она непрерывна.

Но ради интереса посмотрим предел справа

\displaystyle \lim_{x\to-2+0}\bigg(\frac{1}{x^2-4}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(x-2)(x+2)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-2+0-2)(-2+0+2)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{(-4+0)(+0)}\bigg)=\\=\lim_{x\to-2+0}\bigg(\frac{1}{(-4)(+0)}\bigg)=\lim_{x\to-2+0}\bigg(\frac{1}{-0}\bigg)=-\infty

То есть при переходе через точку x=-2 функция с положительной бесконечности прыгает на отрицательную, в целом это нормально для гипербол.

И последний предел, который посчитаем, это при x\to1, просто это правый конец области определения.

\displaystyle\lim_{x\to1}\bigg( \sqrt{1-x}-\frac{1}{\sqrt{x+4}}+\frac{1}{x^2-4} \bigg)=\lim_{x\to1}\bigg( \sqrt{1-1}-\frac{1}{\sqrt{1+4}}+\frac{1}{1^2-4} \bigg)=\\=0-\frac{1}{\sqrt{5}}-\frac{1}{3}=-\frac{3+\sqrt{5}}{3\sqrt{5}}=-\frac{3\sqrt{5}+5}{15}

То есть функция на (-4;-2) (имеем в виду -2-0) растет от -\infty до +\infty (необязательно монотонно), затем на (-2;1] (имеем в виду -2+0) растет от -\infty до \displaystyle -\frac{3\sqrt{5}+5}{15}

(также необязательно монотонно).

И разрыв 2-го рода при x=-2

ответ: \boxed{E(y)=(-\infty;+\infty)}


Найди область значений функции: ( с точками )
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота