Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
На первом витке окружности расставлены точки 0; π/2; π; 3π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4
На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4 + 2π=11π/4
На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение
11π/4+2π=19π/4
На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4
На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1
Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью
Это точки А и В
Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1
Пусть
√17-√26 > -1
√17 + 1 > √26
17 + 2√17 + 1 >26
2√17>8
4·17 > 64 - верно
Значит точка существует
Ей соответствуют на ед окружности точки Р и Т
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)