В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
dashakomp2005
dashakomp2005
01.11.2022 13:02 •  Алгебра

Равны ли множества А и B, если :
1) А={1, 2, {1, 2}, 3}, B={3, 2, 1};
2) A={a, b, x} i B={(a, b), x}.

Показать ответ
Ответ:
erik09hfilya
erik09hfilya
19.02.2023 20:43

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

0,0(0 оценок)
Ответ:
Dhgfhdudv
Dhgfhdudv
03.12.2021 15:22
1tg(-a)*cosa+sina=-tga*cosa+sina=-sina*cosa/cosa +sina=-sina+sina=0 2 cos²a*tg²(-a)-1=cos²a*tg²a-1=cos²a*sin²a/cos²a-1=sin²a-1=-cos²a 3 ctg(-b)*sinb/cosb=-ctgb*sinb/cosb=-cosb*sinb/(sinb*cosb)=-1 4 (1-tg(-x))/(sinx+cos(-x))=(1+tgx)/(sinx+cosx)=(1+sinx/cosx)*1/(sinx+cosx)= =(cosx+sinx)/cosx*1/(sinx+cosx)=1/cosx 5 ctga*sin(-a)-cos(-a)=-ctga*sina-cosa=-cosa*sina/sina-cosa=-cosa-cosa= =-2cosa 6 tg(-u)ctgu+sin²u=-tgu*ctgu+sin²u=-1+sin²u=-cos²u 7 (1-sin²(-y))/(cosy=(1-sin²y)/cosy=cos²y/cosy=cosy 8 (tg(-x)+1)/(1-ctgx)=(-tgx+1)/(1-ctgx)=(-sinx/cosx+1): (1-cosx/sinx)= =(cosx-sinx)/cosx*sinx/(sinx-cosx)=-tgx
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота