В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Dasěuke345
Dasěuke345
29.01.2023 19:10 •  Алгебра

Решить дифференциальное уравнение:

Показать ответ
Ответ:
Lena12281995
Lena12281995
12.10.2020 01:59

Тип: дифференциальное уравнение второго порядка, допускающее понижения порядка.

Пусть y'=u(x), тогда y''=u', получаем :

u'=u+x\\ \\ u'-u=x

Умножим обе части уравнения на e^{\int -dx}=e^{-x}, получаем

u'e^{-x}-ue^{-x}=xe^{-x}\\ \\ \Big(u\cdot e^{-x}\Big)'=xe^{-x}

Интегрируем обе части уравнения

\displaystyle u\cdot e^{-x}=\int xe^{-x} dx

В правой части уравнения интеграл будем считать путём интегрирования по частям

\displaystyle \int xe^{-x}dx=\left|\begin{array}{ccc}u=x;~~~ du=dx\\ \\ e^{-x}dx=dv;~~~ v=-e^{-x}\end{array}\right|=-xe^{-x}+\int e^{-x}dx=\\ \\ \\ =-xe^{-x}-e^{-x}+C_1=C_1+e^{-x}\Big(-x-1\Big)

u=C_1e^{x}-x-1

Выполним обратную замену

y'=C_1e^{x}-x-1\\ \\ \displaystyle y=\int \Big(C_1e^{x}-x-1\Big)dx=\boxed{\bf C_1e^{x}-\dfrac{x^2}{2}-x}

ответ: y=C_1e^{x}-\dfrac{x^2}{2}-x.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота