2cos(π/3 - 3x) + √3 = 0
2cos(π/3 - 3x) = -√3
cos(π/3 - 3x) = -√3/2
• Воспользуемся формулой:
cos(x) = b ( |b|≤ 1, [0; π] )
x = ± arccos(b) + 2πn, n ∈ ℤ
• Получаем:
π/3 - 3x = ± arccos(-√3/2) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - arccos(-√3/2)) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - 5π/6) + 2πn, n ∈ ℤ
π/3 - 3x = ± π/6 + 2πn, n ∈ ℤ
-3x = ± π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/2 + 2πn, n ∈ ℤ / : (-3)
[ -3x = -π/3 + 2πn, n ∈ ℤ / : (-3)
[ x = π/6 - 2πn/3, n ∈ ℤ
[ x = π/9 - 2πn/3, n ∈ ℤ
ответ: x = π/6 - 2πn/3, n ∈ ℤ ; x = π/9 - 2πn/3, n ∈ ℤ
1) Действия по решению линейного уравнения
y=9−2x
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
9−2x=y
Вычтите 9 из обеих частей уравнения.
−2x=y−9
Разделите обе части на −2.
−2
−2x
=
y−9
Деление на −2 аннулирует операцию умножения на −2.
x=
Разделите y−9 на −2.
2
9−y
2) Действия по решению линейного уравнения
y=
x+3
x
Переменная x не может равняться −3, так как деление на ноль не определено. Умножьте обе части уравнения на x+3.
y(x+3)=x
Чтобы умножить y на x+3, используйте свойство дистрибутивности.
yx+3y=x
Вычтите x из обеих частей уравнения.
yx+3y−x=0
Вычтите 3y из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
yx−x=−3y
Объедините все члены, содержащие x.
(y−1)x=−3y
Разделите обе части на y−1.
y−1
(y−1)x
=−
3y
Деление на y−1 аннулирует операцию умножения на y−1.
x=−
Переменная x не может равняться −3.
, x
=−3
Объяснение: Где квадратик, там перечеркнутое равно
2cos(π/3 - 3x) + √3 = 0
2cos(π/3 - 3x) = -√3
cos(π/3 - 3x) = -√3/2
• Воспользуемся формулой:
cos(x) = b ( |b|≤ 1, [0; π] )
x = ± arccos(b) + 2πn, n ∈ ℤ
• Получаем:
cos(π/3 - 3x) = -√3/2
π/3 - 3x = ± arccos(-√3/2) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - arccos(-√3/2)) + 2πn, n ∈ ℤ
π/3 - 3x = ± (π - 5π/6) + 2πn, n ∈ ℤ
π/3 - 3x = ± π/6 + 2πn, n ∈ ℤ
-3x = ± π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = π/6 - π/3 + 2πn, n ∈ ℤ
[ -3x = -π/2 + 2πn, n ∈ ℤ / : (-3)
[ -3x = -π/3 + 2πn, n ∈ ℤ / : (-3)
[ x = π/6 - 2πn/3, n ∈ ℤ
[ x = π/9 - 2πn/3, n ∈ ℤ
ответ: x = π/6 - 2πn/3, n ∈ ℤ ; x = π/9 - 2πn/3, n ∈ ℤ
1) Действия по решению линейного уравнения
y=9−2x
Поменяйте стороны местами, чтобы все переменные члены находились в левой части.
9−2x=y
Вычтите 9 из обеих частей уравнения.
−2x=y−9
Разделите обе части на −2.
−2
−2x
=
−2
y−9
Деление на −2 аннулирует операцию умножения на −2.
x=
−2
y−9
Разделите y−9 на −2.
x=
2
9−y
2) Действия по решению линейного уравнения
y=
x+3
x
Переменная x не может равняться −3, так как деление на ноль не определено. Умножьте обе части уравнения на x+3.
y(x+3)=x
Чтобы умножить y на x+3, используйте свойство дистрибутивности.
yx+3y=x
Вычтите x из обеих частей уравнения.
yx+3y−x=0
Вычтите 3y из обеих частей уравнения. Если вычесть любое число из нуля, то получится его отрицательный эквивалент.
yx−x=−3y
Объедините все члены, содержащие x.
(y−1)x=−3y
Разделите обе части на y−1.
y−1
(y−1)x
=−
y−1
3y
Деление на y−1 аннулирует операцию умножения на y−1.
x=−
y−1
3y
Переменная x не может равняться −3.
x=−
y−1
3y
, x
=−3
Объяснение: Где квадратик, там перечеркнутое равно