соч №1. Преобразуйте уравнение (x-5)^2+6x=4x(x+3) к виду ax^2+bx+c=0 и укажите старший коэффициент, второй коэффициент и свободный член.
№2. Определите, какое из приведенных ниже уравнений является полным квадратным уравнением:
А) -4x^2=7x
Б) 6-2x^2+3x=0
С) 1,5x=8x^2
Д) 3x^4+9x^2=1
№3. Дано квадратное уравнение 9x^2+6x+c=0
а) При каких значениях параметра с данное уравнение имеет два одинаковых действительных корня?
b) Найдите эти корни уравнения.
№4. Не вычисляя корней квадратного уравнения x^2-9x+20=0, найдите x_1^2+x_2^2 .
№5. Для квадратного трехчлена x^2-10x+16=0
а) выделите полный квадрат;
b) разложите квадратный трехчлен на множители.
№6. Дано уравнение: (x-3)/(x-5)+1/x=(x+5)/(x(x-5))
a) Укажите область допустимых значений уравнения;
b) Приведите рациональное уравнение к квадратному уравнению;
c) Найдите решения рационального уравнения.
№7. Решите уравнения: x^2+6 х-7=0
Касательная задается уравнением:
y = f ’(x₀) · (x − x₀) + f (x₀)
Здесь f ’(x₀) — значение производной в точке x₀, а f (x₀) — значение самой функции.
Находим производную в точке х₀:
f'(x₀) = -2x₀ - 5.
Функция в точке х₀ имеет вид: f(x₀) = -х₀² - 5х₀ - 6.
Тогда уравнение касательной будет таким:
у = (-2х₀ - 5)*(х - х₀) - х₀² - 5х₀ - 6.
Раскроем скобки и приведём подобные:
у = -2х*х₀- 5х + 2х₀² + 5х₀ - х₀² - 5х₀ - 6.
у = х₀² -2х*х₀ - 5х - 6.
Так как касательная проходит через точку М, то подставим её координаты в полученное уравнение.
1 = х₀² + 2х₀ + 5 - 6.
Получаем квадратное уравнение х₀² + 2х₀ - 2 = 0.
Решаем его, считая х₀ как х.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=2^2-4*1*(-2)=4-4*(-2)=4-(-4*2)=4-(-8)=4+8=12;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁ = (√12-2)/(2*1) = √12/2-2/2 = √12/2-1 = √3 - 1 ≈ 0.73205081;
x₂ = (-√12-2)/(2*1) = -√12/2-2/2 = -√12/2-1 = -√3 - 1 ≈ -2.73205081.
Теперь, зная точки касания, можно составить уравнения касательных.
f'(x₀) = -2x₀ - 5 = -2(√3 - 1) - 5 = -2√3 - 3.
f(x₀) = -х₀² - 5х₀ - 6 = -(√3 - 1)² - 5(√3 - 1) - 6 =
= -(3 - 2√3 + 1) - 5√3 + 5 - 6 = -3√3 - 5.
y = f ’(x₀) · (x − x₀) + f (x₀) = (-2√3 - 3)(x + 2√3 + 3) - 3√3 - 5.
После упрощения получаем общее уравнение первой касательной:
0,8x - 1,73y + 2,54 = 0.Аналогично получаем уравнение второй касательной:
11,2x + 1,73y + 9,46 = 0.
v₁ = 60/t
Скорость второго катера:
v₂ = 60/(t+1)
Скорость сближения катеров:
v = v₁+v₂ = 60/t + 60/(t+1) =
= 60(t+1)+60t)/(t(t+1)) = (120t+60)/(t²+t)
По условию: v = S/t' = 50:1 = 50 (км/ч)
Тогда:
120t + 60 = 50t² + 50t
50t² - 70t - 60 = 0
5t² - 7t - 6 = 0 D = b²-4ac = 49+120 = 169
t₁ = (-b+√D)/2a = 2 (ч)
t₂ = (-b-√D)/2a = -0,6 (ч) - не удовлетворяет условию
Тогда скорость первого катера:
v₁ = 60/t = 60:2 = 30 (км/ч)
Скорость второго катера:
v₂ = 60/(t+1) = 60:3 = 20 (км/ч)
ответ: 30 км/ч; 20 км/ч.