В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kerimagaevakk
kerimagaevakk
21.05.2021 13:35 •  Алгебра

Соч за 1 четверть по алгебре 9 класс


Соч за 1 четверть по алгебре 9 класс

Показать ответ
Ответ:
zhasbaevamp06rkz
zhasbaevamp06rkz
09.03.2022 00:31

1) Простейший конденсатор-это плоский конденсатор. Плоский конденсатор состоит из двух параллельных плоских проводников-пластинок, которые называются обкладками конденсатора. Поэтому если мы увеличиваем диэлектрическую проницаемость (диэлектрик) в определенное количество раз, то, следовательно, емкость плоского конденсатора увеличится в тоже количество раз⇒что плоский конденсатор увеличится в 2,1 раз

2) Дано:                          Формула:                           Решение:      

   U=24В                         С=q/U                                 С=3*10∧-5Кл/24В=

   q=30мкКл=                                                             =0,125*10∧-5Ф=1,25мкФ

   =3*10∧-5Кл

                                                              ответ: С=1,25мкФ

   C-?мкФ

3) Дано:                         Формула:                       Решение:

   С=40нФ=                   С=q/U⇒                          q=4*10∧-8Ф*30В=

   =4*10∧-8Ф                  q=CU                              =120*10∧-8Кл=1,2мкКл

   U=30В

                                                           ответ: q=1,2мкКл

   q-?мкКл

0,0(0 оценок)
Ответ:
svettik2016
svettik2016
02.02.2021 07:54

Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение

\lambda^2-6\lambda+9=0λ

2

−6λ+9=0

имеем случай кратных действительных корней, значит общее решение однородного уравнения

y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C

1

∗e

3x

+C

2

∗x∗e

3x

Далее применим метод вариации. Тогда

\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}

<br/>

<br/>e

3x

<br/>3e

3x

<br/>

e

3x

x

3xe

3x

+e

3x

<br/>

<br/>

<br/>C

1

(x)

<br/>C

2

(x)

<br/>

<br/>

=

<br/>

<br/>0

<br/>9x

2

−12x+2

<br/>

<br/>

Откуда получим

C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C

1

(x)=−e

−3x

∗x∗(9x

2

−12x+2),<br/>C

2

(x)=e

−3x

∗(9x

2

−12x+2)

Интегрированием находим

C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC

1

(x)=−e

−3x

(x

2

−3x

3

)+A,C

2

(x)=e

−3x

(2x−3x

2

)+B

Следовательно общее решение уравнения запишется как (переобозначим константы A и B )

y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e

−3x

(x

2

−3x

3

)+C

1

)∗e

3x

+(e

−3x

(2x−3x

2

)+C

2

)∗x∗e

3x

или

y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C

1

∗e

3x

+x∗C

2

∗e

3x

+x

2

Соотв. постоянные для нашей задачи Коши находятся из системы

\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{

y

(0)=3

y(0)=0

Откуда

\left \{ {{C_1=0} \atop {C_2=3}} \right.{

C

2

=3

C

1

=0

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота