Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
При решении данных неравенств самое главное - помнить два правила: х всегда переносится в левую часть, числа - в правую. При переносе из одной части в другую меняется на противоположный знак. А) 5х - 4 < 2x + 5 Перенесем х - влево, числа - вправо. Тогда: 5x - 2x < 4 + 5 3x < 9 (разделим на три) x < 3 ответ: ( - ∞; 3)
Б) х - 5 < 4 * (x-2) Раскроем скобки во второй части: х - 5 < 4x - 8 Перенесем х - влево, числа - вправо: x + 4x < 5 - 8 5x < - 3 (разделим на 5) x < - 0, 6 ответ: (-∞; - 0,6)
В) 4 * (3x + 1) > 6 * (3x-2) Раскроем скобки в двух частях: 12х + 4 > 18x - 12 Перенесем х - влево, числа - вправо 12x - 18x > - 4 - 12 - 6x> - 16 (разделим на -6) x < 16/6 ответ: (-∞; 16/6) Здесь правило: при делении/умножении выражение на отрицательное число - знак неравенства меняется на противоположный.
ответ: 4/9
Объяснение :Значение параметра а, при котором уравнение |x²-3ax|=a, имеет три корня ровно.
Решение.
Значение параметра а >0 так как при a<0 уравнение не имеет решения.
x²-3ax - является уравнением параболы с ветвями направленными вверх и пересекающей ось Ох в точках (0;0) и (3а;0). Так как а>0 то вторая точка находится в первой четверти координатной плоскости. Модуль выражения x²-3ax -является той же параболой у которой участок параболы находящийся ниже оси Ох зеркально отображен вверх над осью Ох.
Данное уравнение имеет только три решения если прямая у =а пересекает ветви параболы у =x²-3ax и одновременно касается вершины параболы на участке 0<x<3a(зеркально отображенном относительно оси Ох).
Найдем координаты (xo;yo) вершины параболы у =x²-3ax
xo = 1,5a
yo = (1,5)²a² -3*1,5a = -1,5²a²
Вершина нашей параболы у =|x²-3ax| находится в точке
xo = 1,5a
yo = |-1,5²a²| =1,5²a² =(3/2)²a² =(9/4)a² =9a²/4
Так как прямая у=a касается вершины параболы то запишем уравнение
9a²/4 =а
9а/4 =1
a = 4/9
ответ: 4/9
х всегда переносится в левую часть, числа - в правую. При переносе из одной части в другую меняется на противоположный знак.
А) 5х - 4 < 2x + 5
Перенесем х - влево, числа - вправо. Тогда:
5x - 2x < 4 + 5
3x < 9 (разделим на три)
x < 3
ответ: ( - ∞; 3)
Б) х - 5 < 4 * (x-2)
Раскроем скобки во второй части:
х - 5 < 4x - 8
Перенесем х - влево, числа - вправо:
x + 4x < 5 - 8
5x < - 3 (разделим на 5)
x < - 0, 6
ответ: (-∞; - 0,6)
В) 4 * (3x + 1) > 6 * (3x-2)
Раскроем скобки в двух частях:
12х + 4 > 18x - 12
Перенесем х - влево, числа - вправо
12x - 18x > - 4 - 12
- 6x> - 16 (разделим на -6)
x < 16/6
ответ: (-∞; 16/6)
Здесь правило: при делении/умножении выражение на отрицательное число - знак неравенства меняется на противоположный.
Г) 5 * (х-4) > 7 * (x-1) - 2x
5x - 20 > 7x - 7 - 2x
5x - 20 > 5x - 7
5x - 5x > 20 - 7
0 - 13 > 0
нет корней