Один ученик измерил линейкой ребро кубика и определил, что оно равно (5 ± 0,1) см. После этого он вычислил объем кубика. Второй ученик измерил объем того же кубика мерным цилиндром и получил результат (124 ± 2 мл). Какое из утверждений верно? Результаты измерения двух учеников в пределах ошибок измерений Выберите один ответ:
1.не совпадают, и результат у первого более точен
2.совпадают, но у второго результат более точен
3.совпадают, но у первого результат более точен
4.не совпадают, и результат у второго более точен
ответ:Формула плеча силы
Определение и формула плеча силы
Рассмотрим рычаг с осью вращения находящийся в точке О. (рис.1). Силы F¯¯¯¯1 и F¯¯¯¯2, действующие на рычаг направлены в одну сторону.
Формула плеча силы, рисунок 1
Минимальное расстояние между точкой опоры (точка О) и прямой, вдоль которой действует на рычаг сила, называют плечом силы.
Для нахождения плеча силы следует из точки опоры опустить перпендикуляр к линии действия силы. Длинна данного перпендикуляра и станет плечом рассматриваемой силы. Так, на рис.1 расстояние |OA|=d1- плечо силы F1; |OA|=d2- плечо силы F2.
Рычаг находится в состоянии равновесия, если выполняется равенство:
F1F2=d2d1(1).
Предположим, что материальная точка движется по окружности (рис.2) под действием силы F¯¯¯¯ (сила действует в плоскости движения точки). В таком случае угловое ускорение (ε) точки определяется тангенциальной составляющей (Fτ) силы F¯¯¯¯:
mRε=Fτ(2),
где m - масса материальной точки; R - радиус траектории движения точки; Fτ - проекция силы на направление скорости движения точки.
Если угол α - это угол между вектором силы F¯¯¯¯ и радиус - вектором R¯¯¯¯, определяющим положение рассматриваемой материальной точки (Этот радиус- вектор проведен из точки О в точку А на рис.2), тогда:
Fτ=Fsinα (3).
Расстояние d между центром O и линией действия силы F¯¯¯¯ называют плечом силы. Из рис.2 следует, что:
d=Rsinα (4).
Формула плеча силы, рисунок 2
Если на точку будет действовать сила (F¯¯¯¯), направленная по касательной к траектории ее движения, то плечо силы будет равно d=R, так как угол α станет равен π2.
Момент силы и плечо
Понятие плечо силы иногда используют, для записи величины момента силы (M¯¯¯¯¯), который равен:
M¯¯¯¯¯=[r¯¯F¯¯¯¯](5),
где r¯¯ - радиус - вектор проведенный к точке продолжения силы F¯¯¯¯. Модуль вектора момента силы равен:
M=Frsinα= Fd (6).
Построение плеча силы
И так, плечом силы называют длину перпендикуляра, который проводят из некоторой выбранной точки, иногда ее называют полюсом (выбираемой произвольно, но при рассмотрении одной задачи один раз). При рассмотрении задач точку О выбирают обычно на пересечении нескольких сил) к силе (рис.3 (а)). Если точка О будет лежать на одной прямой с силами или на самой силе, то плечи сил будут равны нулю.
Заметим, что при прохождении точки π/2 шарик должен иметь неотличимое натяжение нити, иначе она согнется и полный оборот не получится.
Тогда по второму закону Ньютона имеем: mg = ma, т.е. a = g
Центростремительное ускорение шарика в точке π/2: g = V2^2 / R => V2^2 = g R
Теперь прибегнем к закону сохранения энергии (в точке -π/2 и π/2). Получаем (V1 - начальная скорость шарика, которую мы ищем):
mV1^2 / 2 = mV2^2/2 + mg2R
mV1^2 / 2 = (mgR + 4mgR) / 2
mV1^2 = 5mgR
V1 = √5gR