Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так? Сила трения Fтр = N * mu = m * g * mu Ускорение (как учил старина Ньютон) а = F / m. В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения. х = ( v^2 - u^2 ) / (2a) 16 = (121 - u^2) / 6 u^2 = 25 u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента: t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
Всё, с чем имеет дело физика, относится к материальному миру, так что, обобщённо говоря, можно сказать, что физика изучает изменение положения материи в пространстве и времени. Скорость, с которой движется любая часть материи, непосредственно связана с величиной энергии её движения, а в современной физике установлена неразрывная связь в виде прямой эквивалентности энергии и массы материи. Стало быть, мы должны заключить, что материей является, не только первично интуитивно понятное нам проявление массы, но так же и само пространство и время, в котором движется вся материя. Пространство и время – так же являются видом материи. Итак, основным предметом изучения физики является материя. Что прекрасно описывает и старое название этого предмета – «Материальная Философия», которое стало уступать место новому названию «Физика» только в начале XVIII века. Сделав это обобщение, и осознав его, мы, тем не менее, понимаем, что для нас не менее важно, чем до него, уметь различать всевозможные виды материи.
Электрическое поле – это особый вид материи, порождаемый электрическими зарядами и непреложно сопровождающий их. Элементарный электрический заряд в виде точки порождает элементарное сферически-симметричное электрическое поле. Для визуализации пространственного образа такого поля удобно воспользоваться аналогией с «одуванчиком». Центр цветка в такой аналогии – это точечный заряд, а его тончащие лепестки – это электрическое поле. Любая аналогия страдает недостатками, а поэтому следует сказать, что в реальном элементарном электрическом поле – плотность электрического поля, с удалением от точечного заряда, постепенно уменьшается, но никогда не оказывается равной нулю. Представляемый нами одуванчик имеет окончательную поверхность. А элементарное электрическое поле точечного заряда – истончается, истончается, истончается... но никогда не исчезает полностью, на расстоянии даже в квинтиллионы километров.
Поскольку элементарное сферически-симметричное электрическое поле, порождаемое любым точечным электрическим зарядом, является непреложным, т.е. существует всегда, пока существует заряд, и перестаёт существовать при исчезновении источника поля, то вообще говоря, нет смысла рассматривать в понятийном смысле: электрическое поле отдельно от заряда. Точно так же как нет смысла рассматривать по отдельности понятия положительных и отрицательных чисел – одно не имеет смысла без другого. Поле (электростатическое) существует тогда и только тогда, когда существует электрический заряд, а когда существует электрический заряд – непременно существует и его электрическое поле. Таким образом, нужно понимать, что поле электрического заряда – это его «руки» и «ноги», которые у него отнять невозможно. Так что, если мы видим заряженный металлический шар, то нужно понимать, что кроме того, что мы видим (т.е. шар) существует ещё и его электрическое поле, своими тонкими нитями протирающееся сквозь всё необозримое пространство, включая и нас самих – наблюдателей. Причём у любого электрического поля, как и у любой материи, есть и масса и энергия. Так, скажем, если зарядить металлический шар, размером с дыню до 300 вольт, то его внешнее электрическое поле будет весить около 0.00000000001 нанограмма или 0.00000001 пикограмма, что сравнимо с массой примерно 1000 атомов.
Как же можно «потрогать» это невидимое, всепроникающее электрическое поле и является ли оно таким уж всепроникающим? У человека есть несколько достаточно тонко настроенных и развитых чувств. Однако электрический заряд эти чувства не видят, не слышат, не осязают, а поэтому нам нужно построить некоторую модель восприятия – опыт, в котором мы увидим проявление поля – именно это и подразумевается под словом «потрогать». ответ на этот вопрос, как «потрогать» поле проясняет ещё одну важную особенность электрического поля — его векторный характер. И научиться «трогать» поле – довольно просто. Если у нас уже есть один точечный (ну или сферически-симметричный) электрический заряд, то мы можем догадываться, что он порождает/создаёт (а фактически имеет) вокруг себя элементарное сферически-симметричное электрическое поле. Назовём этот заряд, поле которого мы хотим «потрогать» – центральный заряд (ЦЗ).
Мне так представляется, что ускорение мела (замедление, если угодно, отрицательное ускорение) в данной задаче постоянно.
Почему так?
Сила трения Fтр = N * mu = m * g * mu
Ускорение (как учил старина Ньютон) а = F / m.
В направлении движения, на мел действует единственная сила - трения, других я из условия не усматриваю.
Следовательно, ускорение
а = m * g * mu / m = g * mu = 10 * 0,3 = 3 м/с2
Обычное тело в таких условиях ехало бы путь
Х = v^2 / (2a) = 121 / 6 = 20,1666 м, но эх, какая незадача - мел истирается. Ок, так сколько же метров сможет вообще проехать мел до полной аннигиляции при условии заданных цифр?
х = 8 г / 0,5 г/м = 16 м. Жаль, недолог его путь. Но зато мы уже более близки к ответу.
Чисто технически мне проще сначала найти скорость u мела в момент его исчезновения.
х = ( v^2 - u^2 ) / (2a)
16 = (121 - u^2) / 6
u^2 = 25
u = 5 м/с - при этой скорости от мела, как от чеширского кота, остаётся лишь наглая глумливая ухмылка, и больше ничего.
Отсюда поищем время от начала движения до сего печального момента:
t = (v-u) / a = (11-5) / 3 = 2 c
Ну, может я ошибаюсь, но мне так кажется. Если, конечно, мел не украдут раньше в пути его следования.
Электрическое поле – это особый вид материи, порождаемый электрическими зарядами и непреложно сопровождающий их. Элементарный электрический заряд в виде точки порождает элементарное сферически-симметричное электрическое поле. Для визуализации пространственного образа такого поля удобно воспользоваться аналогией с «одуванчиком». Центр цветка в такой аналогии – это точечный заряд, а его тончащие лепестки – это электрическое поле. Любая аналогия страдает недостатками, а поэтому следует сказать, что в реальном элементарном электрическом поле – плотность электрического поля, с удалением от точечного заряда, постепенно уменьшается, но никогда не оказывается равной нулю. Представляемый нами одуванчик имеет окончательную поверхность. А элементарное электрическое поле точечного заряда – истончается, истончается, истончается... но никогда не исчезает полностью, на расстоянии даже в квинтиллионы километров.
Поскольку элементарное сферически-симметричное электрическое поле, порождаемое любым точечным электрическим зарядом, является непреложным, т.е. существует всегда, пока существует заряд, и перестаёт существовать при исчезновении источника поля, то вообще говоря, нет смысла рассматривать в понятийном смысле: электрическое поле отдельно от заряда. Точно так же как нет смысла рассматривать по отдельности понятия положительных и отрицательных чисел – одно не имеет смысла без другого. Поле (электростатическое) существует тогда и только тогда, когда существует электрический заряд, а когда существует электрический заряд – непременно существует и его электрическое поле. Таким образом, нужно понимать, что поле электрического заряда – это его «руки» и «ноги», которые у него отнять невозможно. Так что, если мы видим заряженный металлический шар, то нужно понимать, что кроме того, что мы видим (т.е. шар) существует ещё и его электрическое поле, своими тонкими нитями протирающееся сквозь всё необозримое пространство, включая и нас самих – наблюдателей. Причём у любого электрического поля, как и у любой материи, есть и масса и энергия. Так, скажем, если зарядить металлический шар, размером с дыню до 300 вольт, то его внешнее электрическое поле будет весить около 0.00000000001 нанограмма или 0.00000001 пикограмма, что сравнимо с массой примерно 1000 атомов.
Как же можно «потрогать» это невидимое, всепроникающее электрическое поле и является ли оно таким уж всепроникающим? У человека есть несколько достаточно тонко настроенных и развитых чувств. Однако электрический заряд эти чувства не видят, не слышат, не осязают, а поэтому нам нужно построить некоторую модель восприятия – опыт, в котором мы увидим проявление поля – именно это и подразумевается под словом «потрогать». ответ на этот вопрос, как «потрогать» поле проясняет ещё одну важную особенность электрического поля — его векторный характер. И научиться «трогать» поле – довольно просто. Если у нас уже есть один точечный (ну или сферически-симметричный) электрический заряд, то мы можем догадываться, что он порождает/создаёт (а фактически имеет) вокруг себя элементарное сферически-симметричное электрическое поле. Назовём этот заряд, поле которого мы хотим «потрогать» – центральный заряд (ЦЗ).