1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
1. S= 1\2*(высота*основание). 1\2*(6*12)=72\2=56см в кубе.
2.Гипотенуза по теореме Пифагора=10, S=1\2*(катет*катет2)=48\2=24см в кубе.
3.Найдем катет по теореме Пифагора одного из треугольников (BCO). =5. P=5(катет)*4(кол-во сторон)=20см. S= сначала одного треугольника. 1\2*(4*3)(по половине диагоналей)=12:2=6см в кубе. 6*4(количество треугольников в ромбе)=24см в кубе.
4.Так как острый угол трапеции - 45 град, треугольник СНК - равнобедренный. По теореме Пифагора найдем катеты
2х²=(3√2)²
2х²=18
х²=9
х=3
Тогда основания трапеции: ВС=3 АК=2*3=6 Высота СН=3
Можем вычислить площадь трапеции
S=(3+6)*3/2
S=13.5см в кубе.
ух, есть!