1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
1 замкнутая кривая, все точки к-рой равно удалены от центра.
Центр окружности – это точка, равноудаленная от точек окружности
Прямая линия, соединяющая центр с любой точкой окружности или поверхности шара.
2 Хо́рда в планиметрии — отрезок, соединяющий две точки данной кривой
Хорда, проходящая через центр О, называется диаметром.
3 Окружность называется описанной около треугольника, если она проходит через все его вершины. Центр окружности, описанной около треугольника, является точкой пересечения серединных перпендикуляров к сторонам треугольника.
4 Теорема. Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины этих сторон.
5 Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Объяснение:
))
-----------
Соединим вершины треугольника с точкой Ѕ
АЅ=ВЅ=СЅ
Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности.
По условию расстояние до плоскости треугольника 3 см
АО=R
Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора).
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒
Высота треугольника АН=4:(2/3)=6 см