Дано: треугольник abc - р/б , ас- основание, м лежит на ав ,к лежит на вс, р лежит на ас, угол амр = углу ркс, ам = кс доказать а) мр=рк б) мк перпендикулярно вр
А)Доказательство: Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать. б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.
Рассмотрим треугольники AMP и CKP.По условию задачи угол AMP равен углу PKC;сторона AM равна стороне KC,а углы MAP и KCP равны как углы равнобедренного треугольника,лежащие при основании.Поэтому треугольники AMP и CKP равны по второму признаку равенства треугольников.В равных треугольниках против равных углов лежат равные стороны,поэтому стороны MP и KP этих треугольников равны,что и требовалось доказать.
б)Так как AM=KC по условию,то прямая MK параллельна прямой AC.Так как треугольники AMP и CKP равны,то BP является медианой треугольника ABC.Медиана равнобедренного треугольника является также его биссектрисой и высотой. BP перпендикулярна к прямой AC ,а т.к. прямая AC параллельна прямой MK ,то высота BP перпендикулярна к прямой MK,что и требовалось доказать.