Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.
См. рис.1
Так как ABCD - параллелограмм, то: AO = OC; BO = OD.
По теореме о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: OP = OM и OK = ON.
Так как ∠BOP = ∠MOD и ∠BON = ∠KOD, как вертикальные, то:
ΔВОР = ΔMOD по 1-му признаку равенства треугольников (по двум сторонам и углу между ними), то BP = MD = 7 см.
ΔBON = ΔDOK по тому же 1-му признаку равенства треугольников. Следовательно: BN = KD = 6 см.
Периметр параллелограмма АВСD:
Р = 2*(AB + AD) = 2*(16+6 + 18+7) = 2 * 47 = 94 (см)
-------------------------------
См. рис.2
Теорема о свойствах отрезков прямой, проходящей через точку пересечения диагоналей параллелограмма: Данные отрезки делятся точкой пересечения диагоналей параллелограмма пополам.
Доказательство: пусть АВСD - данный параллелограмм и EF - прямая, пересекающая параллельные стороны AD и ВС. Треугольники ВОЕ и FOD равны по второму признаку (стороне и двум прилежащим углам). В этих треугольниках:
ВО = ОD, так как О - середина диагонали АС,
Углы при вершине О равны, как вертикальные, а углы BOE и FOD равны, как внутренние накрест лежащие при параллельных АС и ВС и секущей BD. Из равенства треугольников следует равенство сторон: OE = OF, что и требовалось доказать.
25 см і 30 см
Объяснение:
Нехай ΔАВС - рівнобедрений, АВ = ВС, ∠ВАС < 60°. Бісектриса AD ділить висоту BЕ на відрізки BF = 27,5 см і FE = 16,5 см.
Знайти довжину відрізків BD та DC.
Розв'язання:
За властивістю бісектриси: АВ : АЕ = BF : FE = 27,5 : 16,5 = 5 : 3.
За теоремою Піфагора для ΔАВЕ:
AB² = AE² + BE²
(5x)² = (3x)² + (27,5 + 16,5)²
25х² = 9х² + 44²
16х² = 44²
(4х)² = 44²
4х = 44
х = 11
Отже, АВ = 5·11 = 55 см, АЕ = 3·11 = 33 см.
ВС = АВ = 55 см, АС = 2·АЕ = 33·2 = 66 см.
За властивістю бісектриси: ВD : DC = AB : AC = 55 : 66 = 5 : 6.
Нехай ВD = 5х, DC = 6х. Складемо рівняння:
BD + DC = BC
5х + 6х = 55
11х = 55
х = 5
ВD = 5·5 = 25 см
DC = 6·5 = 30 см