x=54° <A ,наибольший острый угол.
Объяснение:
<A+<B=90°
<A-<B=18°
<A=x
<B=90°-x
<B=x-18°
90°-x=x-18°
2x=90°+18°
2x=108°
x=108°:2
Если от 90°- <A =90°-54°=36° ,то видим,что при этом выполняется второе условие задачи: <С-<А=36°.Значит первый вариант решения нам подходит.
2
<A-<B=36°
<B=<A-36°
<B=90°-<A
x-36°=90°-x
2x=90°+36°
2x=126°
x=126°:2
x=63° <A ,наибольший острый угол.
Если от 90°- <A =90°-63°=17° ,то видим,что при этом не выполняется второе условие задачи: <С-<А=18°.Значит второй вариант решения нам не подходит.
Площадь ромба равна 120 см², а одна из диагоналей больше другой на 14 см. Найдите длину неизвестной диагонали.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Четырёхугольник ABCD — ромб.
S(ABCD) = 120 см².
AC и BD — диагонали.
АС = BD+14 см.
BD = ?
Пусть BD = х.
Тогда —
АС = х+14 см.
▸Площадь ромба равна половине произведения его диагоналей◂
То есть —
Подставим в формулу известные нам значения —
Решаем полученное квадратное уравнение —
Ищем корни —
Как видим, корень х₁ не подходит, так как длина отрезка не может выражаться отрицательным числом.
Поэтому, BD = х = 10 см.
10 см.
x=54° <A ,наибольший острый угол.
Объяснение:
<A+<B=90°
<A-<B=18°
<A=x
<B=90°-x
<B=x-18°
90°-x=x-18°
2x=90°+18°
2x=108°
x=108°:2
x=54° <A ,наибольший острый угол.
Если от 90°- <A =90°-54°=36° ,то видим,что при этом выполняется второе условие задачи: <С-<А=36°.Значит первый вариант решения нам подходит.
2
<A-<B=36°
<B=<A-36°
<B=90°-<A
<A=x
x-36°=90°-x
2x=90°+36°
2x=126°
x=126°:2
x=63° <A ,наибольший острый угол.
Если от 90°- <A =90°-63°=17° ,то видим,что при этом не выполняется второе условие задачи: <С-<А=18°.Значит второй вариант решения нам не подходит.
Площадь ромба равна 120 см², а одна из диагоналей больше другой на 14 см. Найдите длину неизвестной диагонали.
▔ ▔ ▔
★☆★ Чертёж смотрите во вложении ★☆★
Дано:Четырёхугольник ABCD — ромб.
S(ABCD) = 120 см².
AC и BD — диагонали.
АС = BD+14 см.
Найти:BD = ?
Решение:Пусть BD = х.
Тогда —
АС = х+14 см.
▸Площадь ромба равна половине произведения его диагоналей◂
То есть —
Подставим в формулу известные нам значения —
Решаем полученное квадратное уравнение —
Ищем корни —
Как видим, корень х₁ не подходит, так как длина отрезка не может выражаться отрицательным числом.
Поэтому, BD = х = 10 см.
ответ:10 см.