с решением на продолжение стороны bc равнобедренного треугольника abc с основанием ac отметили точку d так что cd=ac а точка C находятся между точками b и d найдите величину угла adc если угол abc равен 64° ответ дайте в градусах
1. В трапеции сумма углов, прилегающих к одной стороне равна 180° Угол при нижнем основании трапеции равен:
180-135=45°
2. Высота, проведенная из вершины угла 135° разделила этот угол на 90° и 135-95=45°.
3. Получили равнобедренный прямоугольный треугольник, один катет которого равен 2,75дм. Значит и второй катет равен 2,75дм. А второй катет является высотой трапеции.
4. Высота разделила нижнее основание на отрезки. Значит длина нижнего основания равна:
27,5+68,3=95,8см
5. Верхнее основание равно разности отрезков нижнего основания, разделенных высотой:
68,3-27,5=40,8см
6. Площадь трапеции равна: половине суммы оснований умноженной на высоту:
Объяснение:
ответ
4,9/5
15
liftec74
ученый
249 ответов
60.5 тыс. пользователей, получивших
ответ: 1) Рabcd=22 см 2) Pabcd=32 см
Объяснение:
Дан параллелограмм ABCD. Угла А и С острые. В и D тупые. Тогда:
1) ВК - биссектриса угла В. АК=4 см и КD= см =>AD=BC=4+3=7 см
Так как ВК-биссектриса, то угол АВК=углу СВК.
Угол СВК=АКВ , так как углы СВК и АКВ накрест лежащие и AD II BC
Тогда угол АКВ=АВК => треугольник АВК равнобедренный=> АВ=АК=4 см
АВ=CD=4 cm
=> Pabcd=AB*2+AD*2=4*2+7*2=8+14=22 см
2) АМ - биссектриса угла А ВМ=5 см МС=6 см => BC=AD=5+6=11 см
Далее все аналогично пункта 1.
MAD=BAM, так MAD ы BAM накрест лежащие и BC II AD
=> BAM=BMA
=> АВС - равнобедренный треугольник => AB=BM=5 cm
=>P abcd= 5*2+ 11*2=10+22=32 см
ответ: 1878,25см²
Объяснение:
1. В трапеции сумма углов, прилегающих к одной стороне равна 180° Угол при нижнем основании трапеции равен:
180-135=45°
2. Высота, проведенная из вершины угла 135° разделила этот угол на 90° и 135-95=45°.
3. Получили равнобедренный прямоугольный треугольник, один катет которого равен 2,75дм. Значит и второй катет равен 2,75дм. А второй катет является высотой трапеции.
4. Высота разделила нижнее основание на отрезки. Значит длина нижнего основания равна:
27,5+68,3=95,8см
5. Верхнее основание равно разности отрезков нижнего основания, разделенных высотой:
68,3-27,5=40,8см
6. Площадь трапеции равна: половине суммы оснований умноженной на высоту:
S=(40,8+95,8)/2*27,5=1878,25см²