Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
Школьные Знания.com
Какой у тебя вопрос?
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Аккаунт удален
03.09.2020
Геометрия
5 - 9 классы
+5 б.
ответ дан
8. Табаны AC, B төбесінің сыртқы бұрышы 112°-қа тең болатын
теңбүйірлі АВС үшбұрышының бұрыштарын табыңдар.
1
СМОТРЕТЬ ОТВЕТ
Спросите о заданном вопросе...
ответ
5,0/5
6
Kazakhtan123
хорошист
16 ответов
413 пользователей, получивших
Берілген: Δ АВС-изоссельдер
∠В = 112 ° - сыртқы бұрыш
Табу бұрыштары ДАВС : ∠АВС -? ,ВС VSA -? , ∠Сіз-?
Шешімі.
Δ АВС қарастырайық :
АВ= ЖС (бүйір жақтары )
∠ВАС = вс ВСА = х (АС негізіндегі бұрыштар)
Үшбұрыштың сыртқы бұрышы онымен байланысты емес екі бұрыштың қосындысына тең, сондықтан :
∠СІЗ = ВС ВСА = В В : 2 ⇒ ВАС СІЗ = ВС ВСА = 112: 2 = 56°
Сыртқы ∠В және АВ АВС-іргелес бұрыштар .
Іргелес бұрыштардың қосындысы 180°
∠АВС = 180-В В = >АВ АВС = 180-112 = 68°
Объяснение:
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см