Дана трапеция АВСD, вокруг которой описана окружность.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).
Из этого следует, что трапеция равнобедренная.
АВ=СD=15 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Известно только одно основание - оно равно диаметру окружности АD=2 r=25 cм Так как центр описанной окружности лежит на большем основании трапеции, диаметр окружности, ее боковая сторона и диагональ образуют прямоугольный треугольник с гипотенузой, равной диаметру.
Высоту трапеции h = ВD найдем по формуле высоты прямоугольного треугольника, проведенного из прямого угла к гипотенузе: h = 2s/a , где а - гипотенуза. Площадь треугольника пока не известна.
Для ее нахождения нужно найти длину второго катета -диагонали трапеции ВD. ВD=√(АD²-АВ²)=√(25²-15²)=√400=20 см 2s ABD=АВ·ВD=15·20=300 cм² h =300:25= 12 см Отрезок от А до основания Н высоты ВН трапеции равен в равнобедренной трапеции полуразности оснований. АН найдем из прямоугольного треугольника АВН по теореме Пифагора. Полуразность оснований 9 см Разность оснований 18 см Меньшее основание ВС= 25 -18=7 см S трапеции = 12·(25+7):2 =192 см²
Действительно апофема будет иметь проекцию на основание пирамиды, которая есть радиус вписанной окружности. Но его нет смысла вычислять. Так как r=S/p где S--- площадь треугольника её мы найдем по формуле Герона, pполупериметр у нас он равен 15 (6+10+14)/2=15 Значит апофема есть h=r*cosq где q-- данный угол в 30градусов Тогда площадь боковой поверхности пирамиды будет: S(бок)=h*p подставляя получим S(бок)=h*p=p*r*cosq=(S/p)*p*cosq= =Scosq S=кореньиз(p(p-a)(p-b)(p-c))= =кореньиз(15*9*5*1)=15корнейиз3--площадь треугольного основания а cos30гр.=кореньиз3/2 Значит площадь боковой поверхности равна 45/2=22,5см²
Дана трапеция АВСD, вокруг которой описана окружность.
Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180° (π радиан).
Из этого следует, что трапеция равнобедренная.
АВ=СD=15 см
Площадь трапеции равна произведению ее высоты на полусумму оснований.
Известно только одно основание - оно равно диаметру окружности
АD=2 r=25 cм
Так как центр описанной окружности лежит на большем основании трапеции,
диаметр окружности, ее боковая сторона и диагональ образуют прямоугольный треугольник с гипотенузой, равной диаметру.
Высоту трапеции h = ВD найдем по формуле высоты прямоугольного треугольника, проведенного из прямого угла к гипотенузе:
h = 2s/a , где а - гипотенуза.
Площадь треугольника пока не известна.
Для ее нахождения нужно найти длину второго катета -диагонали трапеции ВD.
ВD=√(АD²-АВ²)=√(25²-15²)=√400=20 см
2s ABD=АВ·ВD=15·20=300 cм²
h =300:25= 12 см
Отрезок от А до основания Н высоты ВН трапеции равен в равнобедренной трапеции полуразности оснований.
АН найдем из прямоугольного треугольника АВН по теореме Пифагора.
Полуразность оснований 9 см
Разность оснований 18 см
Меньшее основание
ВС= 25 -18=7 см
S трапеции = 12·(25+7):2 =192 см²
Действительно апофема будет иметь
проекцию на основание пирамиды,
которая есть радиус вписанной окружности.
Но его нет смысла вычислять. Так как
r=S/p где S--- площадь треугольника
её мы найдем по формуле Герона,
pполупериметр у нас он равен 15
(6+10+14)/2=15
Значит апофема есть
h=r*cosq где q-- данный угол в 30градусов
Тогда площадь боковой поверхности
пирамиды будет:
S(бок)=h*p подставляя получим
S(бок)=h*p=p*r*cosq=(S/p)*p*cosq=
=Scosq
S=кореньиз(p(p-a)(p-b)(p-c))=
=кореньиз(15*9*5*1)=15корнейиз3--площадь
треугольного основания
а cos30гр.=кореньиз3/2
Значит площадь боковой поверхности
равна 45/2=22,5см²