Квадрат — это прямоугольник у которого все стороны равны. Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
У равнобедренного Δ две стороны равны. 234 - 104 = 130 - это сумма двух равных сторон 130 : 2 = 65 - это одна из равных сторон. Из вершины Δ, противолежащей основанию, опустим высоту на основание Получим 2 равных прямоугольных треугольника. Рассмотрим один из них. Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам 104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ. Гипотенуза = боковой стороне = 65 По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.) ответ: 2028 кв.ед - площадь равнобедренного Δ.
Пусть диагонали AC и BD прямоугольника ABCD перпендикулярны и пересекаются в точке O. Диагонали прямоугольника равны и в точке пересечения делятся пополам, значит, OA=OB=OC=OD. Рассмотрим треугольники AOB и BOC. Треугольники являются прямоугольными и равны по двум катетам, поскольку AO=BO=CO. Тогда гипотенузы этих треугольников также равны, то есть, AB=BC. В прямоугольнике противоположные стороны равны, то есть, AB=CD, BC=AD. Но тогда все стороны прямоугольника равны, что и требовалось.
234 - 104 = 130 - это сумма двух равных сторон
130 : 2 = 65 - это одна из равных сторон.
Из вершины Δ, противолежащей основанию, опустим высоту на основание
Получим 2 равных прямоугольных треугольника. Рассмотрим один из них.
Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам
104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ.
Гипотенуза = боковой стороне = 65
По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ
Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ
S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.)
ответ: 2028 кв.ед - площадь равнобедренного Δ.