№ 5 - ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.
Объяснение:
№ 4.
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между отрезками, на которые основание перпендикуляра делит гипотенузу.
где 4√3)/2 - это половина длины основания, т.к. в равнобедренном треугольнике высота, опущенная на основание, делит его пополам;
2) Высота равна 2 см, а боковая сторона равна 4 см. Значит, высота лежит против угла 30°, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
Так как треугольник равнобедренный, то и второй угол (при основании) также равен 30°.
(тут угол(HBC) равен 109,06°.на фото не видно, и поэтому подобрал на глаз. если что, можешь там поменять цифры и заново посчитать)
Рассмотрим четырехугольник GHBC. Значит сумма углов выпуклого четырехугольника равна 360°.
Отсюда следует уравнение:
360°=угол(HBC)+ угол(BCG)+угол(CGH)+угол(GHB)
И еще по рисунку видно что угол(CGH)=угол(HGI)+угол(IGC)
Так же угол(GHB)=угол(GHI)+угол(IHB)
Подставляем все это в уравнение
360°=угол(HBC)+угол(BCG)+угол(HGI)+угол(IGC)+угол(GHI)+угол(IHB)
Отсюда выходит такое уравнение:
угол(IGС)=360°-угол(HBC)+угол(BCG)+угол(HGI)+угол(GHI)+угол(IHB)=360°-42,71°-36,69°-68,09°-48,31°-42,71°-109,06°=12,43°
ответ: 12,43°
№ 4 - ответ: а = 3√5; b = 6√5
№ 5 - ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.
Объяснение:
№ 4.
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между отрезками, на которые основание перпендикуляра делит гипотенузу.
Если х - длина перпендикуляра, то:
х = √ (3 · 12) = √ 36 = 6 см.
По теореме Пифагора находим катеты:
а = √(3² + 6²) = √(9+36) = √45 √9·5= 3√5
b = √(12² + 6²) = √(144+36) = √180 = √36·5 = 6√5
ответ: а = 3√5; b = 6√5
№ 5
1) По теореме Пифагора находим высоту:
h = √[(4² - ((4√3)/2)²] = √ [16 - (2√3)²] = √ (16 - 4· 3) = √4 = 2 см,
где 4√3)/2 - это половина длины основания, т.к. в равнобедренном треугольнике высота, опущенная на основание, делит его пополам;
2) Высота равна 2 см, а боковая сторона равна 4 см. Значит, высота лежит против угла 30°, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
Так как треугольник равнобедренный, то и второй угол (при основании) также равен 30°.
Находим 3-й угол:
180 (сумма внутренний углов треугольника) - 30 - 30 = 120°.
ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.