В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Каракоз11111
Каракоз11111
11.06.2021 16:15 •  Алгебра

Хэлпаните Размеры участка прямоугольной формы
3,4· 10^{2} м и 5,6· 10^{3} м. Найдите площадь участка.
ответ запишите в стандартном виде.

Показать ответ
Ответ:
26nn
26nn
16.02.2020 15:02
2x²-4х+b=0
Это решается по дискриминанту 
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то  число где x
где c - это то  число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле 
х1= -b + квадратный корень из дискриминанта
                                  делим на 2а 
х2= -b - квадратный корень из дискриминанта
                                  делим на 2а 
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня 
0,0(0 оценок)
Ответ:
erik09hfilya
erik09hfilya
19.02.2023 20:43

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота