Случайная величина Х принимает значения0 с вероятностью 0.4*0.7*0.6 = 0.1681 с вероятностью 0.6*0.7*0.6 + 0.4*0.3*0.6 + 0.4*0.7*0.4 = 0.4362 с вероятностью 0.6*0.3*0.6 + 0.6*0.7*0.4 + 0.4*0.3*0.4 = 0.3243 с вероятностью 0.6*0.3*0.4 = 0.072Математическое ожиданиеМ[X] = 0*0.168 + 1*0.436 + 2*0.324 + 3*0.072 = 1.3ДисперсияD[X] = (0^2)*0.168 + (1^2)*0.436 + (2^2)*0.324 + (3^2)*0.072 - (1.3)^2 = 0.69Функция распределения F(x) равна:0 если x ≤00.168 если 0< x ≤10.604 если 1< x ≤20.928 если 2< x ≤31 если 3< x График этой функции здесь мне не нарисовать
Я подозреваю что тут закралась неясность, в прогрессии насколько я помню количество элементов бесконечно, хотя в убывающей геометрической прогресии сумма всех элементов может сходиться. инфми словами условие следует понимать так что n первых членов прогресии, где n = 2k, выполняется условие в три раза больше, чем рассмотрим это более подробно на примере первых шести элементовсумма нечетных S(1,3,5) = b1 + b3 + b5сумма четных S(2,4,6) = b2 + b4 + b6 = b1*q + b3*q + b5*q = q(b1 + b3 + b5) = q*S(1,3,5)следовательно отношение между четной суммой и нечетной равно знаменателю прогрессии.Для нашей задачи это число 3