а) По кругу лежат 9 одинаковых с виду котлет. Известно, что среди них семъ одинаковых, а две более лёгкие, и они лежат рядом. При этом лёгкие котлеты не обязательно равны друг другу. Как найти их двумя взвешиваниями на чашечных весах без гирь? б) Найдите все лёгкие котлеты, если одинаковых не 7, а только б, а лёг- три подряд.
Шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x^2-3.
x^2+1 = -x^2-3; x^2+x-2 = 0; -1 = -2; x2 = 1.
Шаг 2: Находим определенный интеграл функции y = x^2-3 в пределах от -2 до 1.
Первообразная этой функции будет Y = -1/2*x^2-3x + С
Подставляя пределы интегрирования получаем площадь под функцией S1 = -1/2 - 3 + 2 + 6 = 10,5.
Шаг 3: Находим определенный интеграл функции y = x^2+1 в пределах от 2 до -1.
Первообразная этой функции будет Y = 1/3*x^2-3 + x + С
Подставляя пределы интегрирования получаем площадь под функцией S2 = 1/3 + 1 + 8/3 +2 = -6.
Шаг 4: S = S1-S2; S = 10,5-6; S = 4,5.
Пошаговое объяснение:
Первую цифру пятизначного числа можно выбрать пятью так как выбираем из чисел 1,2,3,4,5), вторую цифру - четырьмя так как цифры в нашем числе не должны повторяться, а первая цифра уже выбрана), третью цифру - можно выбрать тремя четвертую - двумя, и пятую цифру - одним По правилу умножения (известное в комбинаторике правило) умножаем все для выбора цифр, получаем - 5*4*3*2*1=120 пятизначных чисел.
Далее, кратными пяти могут быть только те числа, которые заканчиваются цифрой 5.